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Tracking unstable phenomcna in chaotic laser
experiments: Extending the region of stability in

a multimode laser
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A new algorithm retains control of a chaotic laser over a large range of parameter values. Experi-
ments show an order of magnitude increase in the region of stability in a multimode laser.
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Tracking unstable phenomena in chaotic laser experiments:

Extending regions of stability in a multimode laser

Zelda Gills, Christina Iwata, and Rajarshi Roy, School of Physics, Georgia Irstitute of Technology, Atlanta,
GA 30332, USA

Ira B. Schwartz and loana Triandaf, US Naval Research Laboratory, Special Project for Nonlinear Science,

Code 4700.3, Washington, DC 20375-5000, USA
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Recently, experimental systems which exhibit chaos have been controlled using techniques such
as OGY [1) and the related occasional proportional feedback, OPF [2]. The methods have been
ab!. to stabilize both low dimensional experiments, such as electronic circuits [21 as well as high
dimensional multimode chaotic lasers [3]. Controlling a chaotic system consists of stabilizing an
unstable steady state or periodic orbit by having the system perform small amplitude fluctuations
about some fixed parameter value. The OPF method is implemented by choosing the fluctuations
so that the system is brought closer to the unstable orbit of interest. In the OGY method, the fluc-
tuations are chosen so that the iterates fall on the stable manifold of the unstable orbit, thus keep-

ing the dynamics in the neighborhood of the point of interest in phase space. Both methods are
clearly related [4].

One common drawback of the control method is its sensitivity to dc parameter changes. That is, if
the dc value of the parameter is changed systematically, control is retained only in a small neigh-
borhood of parameter space [5]. This is due to the fact that the point about which the system is
controlled changes as a function of parameter. If the control point is not changed when the param-
eter changes, control is lost. However, in [5] it was shown how to move the control point so that
the error between the control point and true fixed point is minimized. The basic idea was to ob-
serve that when the control point is exactly equal to the fixed point, the mean value of the control
fluctuations is zero. If the control point is moved away from the true fixed point, the mean changes
linearly. Therefore, if the dc parameter value is changed, then the control point is changed by
minimizing the mean of the fluctuations. One is thus able to track the unstable orbits over large re-
gions of parameter space. It is also possible to cancel the effects of parameter drift in experiments
automatically using this technique.

A diode pumped solid state Nd:YAG (neodymium doped yttrium aluminum garnet) laser with an
intracavity KTP (potassium titanyl phosphate) crystal displays chaotic fluctuations of the outnut
intensity for certain operating parameter regimes [6]. An OPF technique for the dynamical control
of the chaotic laser system was demonstrated recently. In this technique, the output is detected by
a photodiode, the output from which is amplified with a variable gain and offset. The signal is
then sampled periodically, at a period deternined by an external synchronizing pulse generator.
The sampled signal is input to the laser diode driver for a time short compared to the sampling pe-
riod. For a description of the control technique, we refer the reader to [3 1. There, we demonstrated
that it is possible to stabilize a wide variety of periodic orbits of the chaotic laser systt.n.

F'r -i particular set of parameters, it was found that the laser operated in stable steady state very
near threshold. As the pump power was increased, the laser displayed a sequence of periodic and
chaotic behaviors. Fig. I shows the average value of the Nd:YAG laser output (relative units) at
1.06 p. as a function of the d.c. bias. The symbols used in the plot denote the steady state, periodic
and chaotic behavior. Application of the OPF technique 131 allows us to stabilize the laser even
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when the steady state becomes unstable. Fig. 2a is an example of chaotic output from the laser
without application of the control signal. Fig. 2b demonstrates the stabilization of the chaotic dy-
namics to a steady state when the control circuit is activated. The stabilized steady state intensity
has the same average value as that of the chaotic output. The control signal fluctuations are ex-
tremely small and difficult to distinguish from noise in the digital oscilloscope traces.

Stabilizing and tracking the unstable steady state required that the control signal be adjusted for
zero d.c. offset (from the preadjusted bias value of the diode laser driver), in accord with algo-
rithms in reference [5]. Fluctuations in the pump power produced by the control circuit were also
minimized by adjusting the time interval of application of the control signal and the frequency of
sampling of the laser output. It was found that steady state could be maintained over a range of
several kHz of the sampling frequency, which was nominally fixed at 80.7 kHz. In Fig. 3, we
show the results of tracking the laser output in the steady state, using control optimization proce-
dure described above. The laser displays periodic, chaotic, and steady state behavior when control
is not applied over the same range of d.c. bias values (Fig. 1). The chaotic or periodic oscillations
are typically a hundred times larger than the intensity fluctuations about the steady state observed
with optimized control parameters, as is seen from Figs. 2(a) and (b).

We have further shown that when control is not optimized for each d.c. bias value, steady state be-
havior can only be maintained over a very small range of pump power (Fig. 4a). In these measure-
ments, control was optimized at a d.c. bias of 272.9 mV to achieve steady state behavior. The
average d.c. bias was then decreased, keeping all control parameters fixed. The laser almost im-
mediately displayed periodic and chaotic pulsations. The corresponding control signal standard
deviations are shown in Fig. 4(b). Control without tracking thus provides a stable steady state only
over a very limited range of pump power.

A comparison of Figs. 1 and 3 immediately shows that the tracking technique allows us to obtain
about fifteen times more output power in a stable steady state for a given setting of the laser pa-
rameters. The stabilized steady state values are very close to the average values for the fluctuating,
unstable laser output for the same d.c. bias. Steady state operation achieved in this manner is ex-
tremely stable for long periods of time (many minutes).

Numerical computations are in progress to illustrate both control and tracking procedures. 17]
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Abstract

Our two dimensional analysis on Vorontsov's nonlinear interferometer model
reveals how to construct complex patterns with unstable eigenrnodes and
how spirals decay into petals.
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Akhrmanov, Vorontsov et al. have recentlv observed various, fascinating
spatial patterns in their experiments with a nonlinear interferumeter", 3

Their mathematical model is found to agree with experiments. Yet their
one dimensional analysis treats only siple petal patterns and not more.,
complex, truly two dimensional patterns- The model equation for thle phase-
U(x, y. t) of the beam is given by

ru1 + U = DV 2U - Ko( I + "y cos('rU -- cl0))

where T(: 0.12sec) is the relaxation time of the nonlinear response, KA
the nonlinear (Kerr) strength, 7 the mirror loss, ýo the phase shift in the
cavity and 7Z the rotation operator 7ZU(r, 9, t) = U(r, 0 + A, t) in the polar
coordinates. This equation is linearised around the plane fixed point U and
its stability to a x-dependent perturbation is analysed using cwo dimensional
Fourier cosine or sine modes.

Our two dimensional linear stability analysis gives stable/unstable spa-
tial eigenmodes which correspond to stable/unstable manifolds. At the pa-
rameters A = 540' D = 0.001 and K 0 = 2.2, for example, the full model
generates from a cosine perturbation a steady state of four rotating and ten
stationary petals (Fig. I). Our analysis predicts that at the same param-
eter values, one real and a pair of complex eigenvalues become unstable,
which translates into a growth of ten stationary and four rotating petal
eigenmodes (Fig- 2). At K0 I 2 which seems typical in the experiments,
our linear theory may be sufficient to determine overall patterns that finally
emerge.

Rotating spirals which Vorontsov and et al have observed in the exper-
iments may eventually unwind and reduce themselves into simpler petals
due to the radial diffusion. With a strong diffusion, this unwinding process
occurs quickly as seen in Fig. 3 where D = 0.01, about 20 times larger than
the usual value. Under certain assumptions, the deformation of spirals may
be expressed in the following diffusion equation for the phase shift O(r. t) of
the rotating spiral f(0 + wt -0(r.t))

D +

where C is some constant. With the parameter values of Fig. 3, C turns
out to be negative. Therefore, 6 -- 0 as t -- +.)o, ie., spirals decay into
petals with no r-dependent phase variation. With much less diffusion, the
process may occur only slowly.
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Fig. 2Two dimensional

analysis predicts two unstable
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ar y petals and (B,C) four ro-
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Fig. 3 Diffusion in the radial direction eventually reduces

spirals to petals. Here the level curve U(r, ) -=U is plotted.
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ABSTRACT

Collapse of a transverse mode continuum into a near-Gaussian single mode in an
imaging photorefractive ring oscillator is predicted numerically and observed

experimentally.



Collapse of a Transverse Mode Continuum in a Photorefractive Oscillator
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The transverse field profile in oscillators following sense. Suppose the oscillation
with nonliinear media is determined by the mode can be approximated by a Gauss*an.
interplay between the nonlinearity and the Then its Fourier transform is also a Gaussian
resonator geometry. In typical laser with a width inversely proportional to the
resonators the resulting field is a input Gaussian. Place a photorefractive
superposition of low order Hermite- saturable gain nonlinearity, which tends to
Gaussian modes. However, there are some broaden a Gaussian field, in one plane, and
oscillator geometries, such as the self- the complementary photorefractive saturable
imaging ring resonator[ I1],which do not lead loss nonlinearity, which tends to narrow a
to a well defined transverse mode. Since any Gaussian field, in the conjugate plane. Thus
optical ray is imaged back onto itself after both nonlinearities cooperate to encourage
one cavity round trip, there is no preferred the formation of a narrow Gaussian in the
optical axis. Diffraction effects will lead plane of the loss medium. Combining this
inevitably to high losses for rays which spatial dynamics with the bistability of the
propagate far from the optical axis, however, gain and loss configuration leads to the
there still exist a large number of possible formation of a single well confined mode,
modes, all with very similar losses. In this and the suppression of all other transverse
paper we show how to actively define the .nodes. Alternatively, the gain and loss
optical axis in such a self-imaging resonator interactions could be placed in image planes.
by placing saturable photorefractive gain In this case the interactions compete
and loss nonlinearities in conjugate spatially. The gain tends to suppress any
resonator planes. The transverse profile local intensity gradients, and the loss tends
maximizes the oscillating power by to amplify any intensity gradients. There is
saturating the photorefractive gain as little as no localized solution that satisfies both
possible, and saturating the photorefractive nonlinearities and the result is a spatially
loss as much as possible. The resulting periodic transverse pattern.
transverse mode turns out to be highly
localized, but with an arbitrary axis of We have demonstrated transverse iod&.
propagation inside the resonator, collapse in the self-imaging ring oscillator

shown in Fig. 1. Energy is transferred to the
The single transverse mode ring resonator resonator by two-beam coupling in
with photorefractive gain and loss has been photorefractive BaTiO 3 crystals. One of the
shown to exhibit bistability and self- crystals, located in the plane labelled G, is
pulsing[2]. The interesting dynamical oriented to provide gain to the oscillating
behavior in this system is due to the beam. The second crystal, located in the
competitive interaction of the gain and the conjugate plane L, is oriented to provide loss
loss. On the other hand, in the imaging to the oscillating beam. The gain pump is a
resonator with a continuum of transverse TEM00 Gaussian with spot size wv, where
modes, the interaction of the gain and the
loss assumes a cooperative character in the w, = 2tA-f•-r is the confocal mode size of



f Lregime[2]. The oscillating field observed in
I b A %,plane L collapses down to the singie near-

f -f t-4 Gaussian mode shown in Fig. 2 frame 9. The
mode size was measured to be roughly 2 Wc.

S -,- The transverse position of the mode depends, -on the initial conditions, and can be seen at
.. . .--. Iany transverse location. However, the mode

""f B'7'0 is not spatially stable and moves about the
g• • ý-.pw aperture. A series of pictures woald show

- the mode to traverse the aperture in the
-, cspace of a few seconds. Interestingly, the

,,mode dces not wander randomly, but rather
f L G G tends to repeatedly traverse a fixed

trajectory. Typically the mode will appear
Fig. 1. Imaging ring resonator with photorefractive on the side of the aperture where the gain is
gain and loss. All lenses are f=100 mm with a spacing highest due to transverse pump depletion
of 2f. The gain and loss pumps are from a cw Argon effects[4], and then move away along a
laser, X=514 nm. direction determined by the cavity

alignment. Depending on the details of the
the equivalent linear resonator. The loss cavity alignment, and the gain and loss
pump beam is an apertured plane wave with pump intensities, the spot either moves away
diameter of about 7 mm. The transverse to the edge of the aperture and disappears
extent of the oscillation is limited by a before reappearing again in its original
circular iris in plane L with a diameter position, or else it executes a cyclic motion
slightly less than 7 mm, which gives an wholly within the aperture. In the latter case
equivalent Fresnel number in terms of the the spot does not move in a closed circle but
fundamental confocal mode, of about 750. rather appfars, moves a short distance, and

then disappears, before repeating its motion.Consider first the situation when only the

gain pump is turned on (Fig. 2, frame l). The
position of the oscillating mode in plane G
is fixed by the pump beam, however its
direction of propagation is undeterminedsince, for the chosen geometry, the N

photorefractive gain varies only slowly with
small angular changes. In plane L the
oscillating mode fills the iris aperture with a
speckle like structure. The oscillation
constantly changes in a turbulent fashion, as
has been studied in detail by Arecchi, et.
al.[3]. If the round trip magnification differs

from unity, or there is some offset or tilt in
the cavity alignment then the oscillation Fig. 2. Collapse of the transverse mode structure.
does not fill the aperture uniformly, but Each frame shows an image of the gain plane on thc
instead assumes a transverse pattern left and the loss plane orn Lhe right. Each frame is
indicative of the round trip equiphase separated by 1/30 see.
contours. With careful alignment less than
one fringe was visible across the transverse We now turn to a model of the observed
aperture. behavior. It is common, when analyzing the

interaction of atomic or Kerr media with
The loss pump is then turned on. The gain radiation fields, to eliminate the rapidly
and loss coupling coefficients and pump relaxing matter variables in favot of the slow
intensities would put the corresponding field variables. When dealing with
single-mode resonator in the bistable photorefractively pumped resonators the
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situation, however, is reversed. For typical has been plotted as a function of
experimental energy densities of 10 W/cm 2  transverse coordinate. It can be sc--n tha-t th::
the medium relaxation time in BaTiO3 is of loss grating has a local minimum. Thii
order 0.1 sec., whereas the field relaxes in serves to stabilize the transverse field
order 10-8 sec. Therefore the appropriate profile, since fluctuations away from the
description of the photorefractive resonator center of the oscillating mode see increased
dynamics is in terms of the matter variables, loss. However, the stability of the gain and
i.e. the photoinduced gratings. In the limit loss gratings themselves can not b-
of weak gratings the resulting equations can determined from these .calculations. In fact
be approximated to yield a set of Lotka- our experimental observations indicate that
Volterra type equations for the grating the oscillating mode stays localized while
amplitudes. These equations describe the moving in the loss plane. This motion
transient small signal behavior, but they are corresponds to a change in the phase shift
not valid in the strong signal regime where across the gain grating and a simultaneousthe photorefractive coupling is saturated, translation of the loss grating. Approaches tospatial stabilization of the oscillating mode,
To gain insight into the observed behavior based on additional nonlinear interactions,
without resorting to lengthy numerical are currently being investigated.
calculations we have performed iterative
calculations of the oscillating field in the Gain Plant Lou Plant

nonphysical limit of medium relaxation time .
much shorter than field relaxation time. D,
While the results so obtained s- y nothing .

about the dynamic stability of the system,
they do converge to self consistent solutions ,
for the field profile, in the spirit of Fox and __

Li[5j. "rwva Coordlnate ". .T ra,--wa Coordinate

Fig. 3. Iterative calculation of the transverse intensity
An example of the results is shown in Fig. 3. profile. The intensity has been normalized to the
The calculation starts by assuming some same maximum value at each iteration.
initial distribution in plane L. In each
iteration the field is Fourier transformed, Gain Plant Low Ptane

propagated through the gain crystal, Fourier
transformed again, propagated through the
loss crystal, and multiplied by the passive
cavity losses. The propagation in the
photorefractive media is calculated by
assuming thin crystals such that there is no .Of
direct coupling between different oscillating TYan °erae Coordinate Trnsverst Coordinate

modes. The field rapidly converges to a near Fig. 4. Steady state grating angle profiles.
Gaussian distribution, which mimics the
pump profile, and minimizes the gain References
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